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XII. The Oscillations of o Rotating Ellipsoidal Shell containing Fluad.
By S. S. Houcs, B.4., St. John's College, Cambridge.
Communicated by Sir RoBerr S. Barr, F.R.S.

Received January 18,—Read February 7,—Revised March 28, 1895.

Introduction.

IN a paper published in ¢ Acta Mathematica,” vol. 16, M. FoLie announces the fact
that the latitude of places on the earth’s surface is undergoing periodic changes in a
period considerably in excess of that which theory has hitherto been supposed to
require. This result has been confirmed in a remarkable manner by Dr. 8. C.
CHANDLER in America (vide ¢ Astronomical Journal,’” vols. 11, 12), who, as the result of
an exhaustive examination of almost all the available records of latitude observations
for the last half-century, has assigned 427 days as the true period in which the
changes are taking place. '

The old theory, based on the assumption that the earth was rigid throughout, led
to a period of 305 days, and M. ForLie proposes to account for the extension of this
period by attributing a certain amount of freedom to the internal pormons of the
earth. The earth he supposes to be composed of “a solid shell moving more or less
freely on a nucleus consisting of fluid at least at its surface.” The argument advanced
by M. Fouik in favour of this constitution of the earth, namely, the independence of
the motions of the shell and the nucleus, appeared to me to be unsatisfactory, and I
therefore proposed to myself to test the validity of it by examining a particular case
which lent itself to mathematical analysis, namely, that in which the internal surface
of the shell is ellipsoidal and the nucleus consists entirely of homogeneous fluid.

The principal axes of the shell and of the cavity occupied by fluid are assumed to
be coincident, and the oscillations are considered about a state of steady motion in
which the axis of rotation coincides with one of these axes. It is clear that a steady
motion will be possible in this case, and that such a motion will be secularly stable
in the event of the axis of rotation being the axis of greatest moment for both the
shell and the cavity.

The problem was originally treated by the analysns used by POINCARE in his

memoir on the stability of the fluid ellipsoid with a free surface (‘ Acta Mathema,tlca,
25.7.95,
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470 MR. S. S. HOUGH ON THE OSCILLATIONS OF A

vol. 7). This analysis reduces the determination of the motion of the fluid to the
problem of finding a single function s, subject to certain boundary conditions, which
in our case take a very simple form. In the case where the surface of the fluid is
ellipsoidal, ifo is found that, when the system is oscillating in one of its normal modes,
¥ will be expressible as the sum of a series of Lamé products of a single order n only.

When # is different from 2, the types of oscillation are such that no disturbance of
the shell is involved, and a period equation for the oscillations of the fluid may be
deduced in a manner similar to that given by POINCARK.

The types of oscillation corresponding to # = 2 demand exceptional treatment, in
consequence of the motion communicated to the shell when they exist. The fluid
motion, however, is found to be such that the molecular rotation is everywhere the
same. Mr. BRYAN has suggested to me that this circamstance may be made use of
in order to treat the oscillations which involve motions of the shell by a simple
analysis previously employed by GrREENHILL (‘ Proc. Camb. Phil. Soc.,” vol. 4, p. 4)
which does not involve Lamé functions. To facilitate the reading of the paper, the
results are first deduced by this method, and the Lamé analysis by which they were
originally obtained is reserved for an appendix.

The oscillations under consideration are found to be of two types. One of these
corresponds to an oscillation previously discussed by Hopkins in his ¢ Researches.in
Physical Geology” ( Phil. Trans., 1839). This exists only in consequence of the
contained fluid, and in it the oscillations of the sheil are similar in character to the
“forced” nutations of the earth produced by the action of the sun and moon. In
the other type the motion of the shell is closely analogous to the motion of a rigid
body when slightly disturbed from a motion of pure rotation about a principal axis,
and, in fact, identifies itself with such an oscillation in the event of the inertia of the
fluid becoming negligible.

On applying the problem to the case of the earth, the latter mode is that on which
the variations of latitude depend. The period, however, is found to be shorter than
it would be if the fluid were solidified, and thus, in this particular case, M. FoLie’s
results are contradicted. It appears to me to be highly probable that any such
freedom in the interior of the earth as that supposed by M. Forik, provided the
surface does not undergo deformation, would have the effect of reducing, instead of
extending, the period, and the true explanation of the phenomenon is probably that
given by Newcoms (‘ Monthly Notices of the Royal Astronomical Society,” March,
1892), who shows that the elasticity of the earth, as a whole, would have the effect
of prolonging the period.

$ 1. The Period Equation.

Let us refer to rectangular axes coincident with the principal axes of the ellipsoidal
cavity.
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ROTATING ELLIPSOIDAL SHELL CONTAINING FLUID. 471

Let o, B, y be the principal semi-axes of this cavity; A, B, C the principal
moments of inertia of the shell.

Suppose the motion of the fluid at any instant consists of a rigid body rotation
with angular velocities &, 9, { about the axes of the ellipsoid, compounded with the
irrotational motion consequent on giving the shell additional angular velocities
Q, O, Q.

The velocity-potential of the irrotational motion will be

B‘)

¥ — o
8+ ¥ yéﬂl -l- ;;2—_*_‘;2 zw.Q —|‘ + ,8 %yﬂd
The velocity-components will therefore be
—_ 2
w= 'yfli_l_uz 2+ 2+ggy‘g3 yC'|"z"7W
BQ
v_T+B2 3+Bz+ zégl_zf"‘wgl} Coe e (1).
B = _ [
W= BZ_I_,Yfly 1+,Y+ 2 Qz w”l‘l"@/f-}

Hence, if Ay, Ay, by be the components of angular momentum, and M denote the
mass of the fluid, p, its density,

k1=A(Ql+f)+”fplolwdyolz(wy—vz)=A(Ql+§)+vgz:_z.2(21 ]
+ 3 (B + ) &
.
k2=B(Qz+7;)+”j.pldwdydz(uz—wm)—-B(92 {"7)4‘#“2‘_,_?;, Q, . (2)

+ M (Y + &%),
ot — B2
hy=C (0 + 9 + [[[prdedy dz (oo — uy) = C (0, + 0 + 3 T o,
+ 1M (@ + ) )

p=AM@E@ =), v=3M(B =) . . . ... (3)

where

If the system be disturbed from a motion of pure rotation, with angular velocity o,
about the axis of z; & 7, Q;, Q,, Qg will all be small quantities, while { will be
approximately equal to o, and hence, on omitting small quantities of the second order
and putting { = o in small terms, the equations of angular momentum, viz. :—

l;l—hzr—l-ksq:O } l(p—ﬂl+f
hy — hgp + hyr =0 r Where< g=0,+7
};3_}51’14'77'2"”:0 9"_.&13+§
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472 MR. 8. S. HOUGH ON THE OSCILLATIONS OF A

become

A+ &) v 5T Lo+ 1M (B + ) €

~|B <nz+n)+ww”E 2+ M +97) 1 | 0+ (9 -+ )[C+ I @+ £)J=0

B(Q + 1)+ p T:q',é + M (7 + @)y
= (@4 E)[C+ U+ BN o[ A0+ B+ T 0 M(B ) fo=0
O+ 1)+ METET d M + B {=0

Hermmorrz's equations of vortex motion are

2 ; 2B '
— n=~—62+75m941, {=0.

Hence, if we put &, 7y, Oy, Qy, Q5, { — @ each proportional to ¢, and introduce,
for brevity, the notation A’ = 1M (8* + %), &e.,

HI )nl+<A+A'>f]
+|0+C—B-p5T L]0+ (C+C —B-B)y=0,
[0+0'— gf“"]ul | L (4).
FO4+0=A-a)=Y[(B4p5T0) 0,4 (B+B) 9] =0,
—*f—l—“g_l_ 50y =0, %17—-552%@1—0 Ji

Eliminating 0,, 0,, &, », the period equation is

%[A+vgz—_;zz], o+0'-B—,,,ZerZ;, MA+A),  CH+CU—B-B
C+C’—A—vgz'_;3:’ _TM[B+M§:£:|, C+C—A—L, X B4B) :
0, ;;21’_% X 0, .
é’;—«iﬁ;, 0, o, M
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ROTATING ELLIPSOIDAL SHELL CONTAINING FLUID. 473.

On expanding and arranging according to powers o, \, this determinant
reduces to

MIA (B + ¥) +» (8 = )1 [B (e + 7)) + s (a2 — 7]
— N [(e 4 7)) (8479 (B—C —») (A — C — ) + 428 (A +7) (B + 1)
+ 4p8 (B — C — ») + dvaiy* (A — C — )] |
+ ot {42 (B—=C—2) (A—C—p)}=0. . . . . . . . . . (5

§ 2. Case of Shell without Inertia.

If the shell be so thin that we may neglect its inertia compared with that of the
fluid, we may put A = B = C = 0, and equation (5) then becomes

(o8 =) (B — ) M — &\ {yf — 3 (2> + ) ¥ + 5’} + 4?2 =0 (6);

when the system is symmetrical about the axis of rotation o? = 8% and this equation

reduces to
M (02 — 922 — o)\ (o — 9?) (5o — 3?) + 40*e?B? = 0,

{1;1;«/(9“2“"7)} R (4

These are the same as the values obtained by BryaN (‘Phil. Trans.,” 1889, A,
p. 208), for the case of a spheroid whose surface is free. As is there indicated, the
modes of oscillation corresponding to these periods are such that the surface of the
spheroid maintains its shape, but changes its position. Such oscillations will,
of course, not be affected by supposing the fluid contained in a rigid shell without
inertia, and we might have expected to obtain the same values for the periods, when
the figure of the shell agrees with a possible figure of equilibrium of the fluid rotating
freely.

From (7) we see that the roots, if real, are positive in order that they may be
real, we require that 92® — »? and &® — 3* must have the same sign.

Hence a necessary condition for ordinary stability is

the roots of which are

¥y > 9a® or < ol

t.e., y must not lie between o and 3a.
Returning to the case where «® == £ in order that the roots may be real and
positive, we must have

(1) (7 — o) (¥ -'-/32) > 0.
(2) y* — 3 (a® + ) v* + 5228 > 0.
(3) {7* — 3 (22 4 B ¥* + 52} — 1662B* (* — o2) (* — B > 0.

MDCCCXCV,—A. 3 r
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474 MR. S. S. HOUGH ON THE OSCILLATIONS OF A

The 1st condition requires that 5? should not lie between o? and f82.
Now :
Y — 3 (2 + B) 7 + 5028 = (5 — 3a?) (y® — 387) — 403B?

= (3a® — 7?) (33% — 7*) — 4~

The 1st form shows that condition (2) is certainly satisfied if

y* > 50 and also > 58%

The 2nd shows that it is satisfied if y* < o® and < B2
Lastly,

= (P = ) O = B) [y = 5 ( + B) ¥+ 98} + 4 (& — )y

(0 = &) (7 = B) (" — 50) (4" — 5) — L6aB"] + 4 (2 — B
=< or '

(@ = ) (B — 7)) {(50® — °) (58° —%°) — 1608} + 4 (a® — B)* %,

Hence condition (3) will certainly be satisfied if 3* > 94* and also > 98° or if
¥ < o and also < 3%
Thus the roots of (6) will both be real and positive if

v <o andalso <G,
or if
y > 3 and also > 383

These conditions are sufficient, but not necessary, to ensure stability ; the neces-
sary conditions are given by the inequalities (1), (2), (3). » ,

The analytical conditions here discussed are approximately realised in the case of a
liquid gyrostat (vide ¢ Nature,” vol. 15, p. 297) mounted on gimbals in such a way that
the centre of gravity is held at rest. The inertia of the gimbal-rings will be unim-
portant when the rotation is rapid, and, if we may also neglect the inertia of the case
compared with that of the fluid, the gyrostat will be stable when set rotating about
its least axis ; it will also be stable when set rotating about its greatest axis when
this axis is, at least, three times as great as either of the others. It will, however,
certainly be unstable when set rotating about its mean axis.

§ 8. Approxvmate Solution of the Period Equation.

Let us for the future suppose that the cavity which contains fluid is approximately

B—q
v

spherical, so that =T - are small quantities.
A v '
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Suppose

From (3) we have
v(e =) =p(B —7");

therefore, if we neglect squares of ¢, €,
wles = vfe, = ¢C say.

In the case where the thickness of the shell is finite compared with its linear
dimensions ¢ will be a finite quantity ; when the shell is thin ¢ will be large, and
when the fluid nucleus is small compared with the dimensions of the whole system ¢
will be small, the densities of the fluid and of the crust being supposed comparable
with one another. In all cases ¢ will be positive.

If €, €, are each equal to zero, the equation (5) becomes

ABM — [(C — A)(C — B) + AB]NMo? + (C — A)(C — B) o* = 0,

(A — «*)[ABN — (C — A)(C — B) o*] = 0.
Thus we obtain as a first approximation to the roots

C=H(EC=B) ,

2 — 2 2 —
N=e N= oD

Next let us retain first powers of €, € 1n (5); this equation then becomes

MAB(14 ¢ +¢)
—N[(C—A)(C—-B)(1+¢+e)+AB(1+ 261 + 2¢,) + ¢ (ACe, + BCe))]
+ o* (1 4 2¢ + 2¢) (C — A 4 ¢C¢) (C — B -+ ¢C¢;) = 0,
or
(M=) (ABM —C—AC—Bw?)
4+ € [ABM — ®\? {(C — A) (C — B) 4+ 2AB + ¢AC}
+ o*(C—B) {2(C — A) + ¢C}]
+ ¢ [ABM — o™\ {(C — A) (C — B) + 2AB + ¢BC}
4+ o*(C—A){2(C—=B)+¢C}]=0 . (8);
dividing by ABN — (C — A)(C — B) 0% and putting A = «? in the terms which

contain € or ¢, as a factor, we obtain as a closer approximation to the root \* = %
3P 2
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476 MR. S. S. HOUGH ON THE OSCILLATIONS OF A
N = wz.[l {(0 A) (0 - B)(o jﬂz;r( ézC ((]33 )— B — A)‘L
{(0 - A)(c B) — AB + ¢C(C — B — A)}]
- (C—A)(C—-B)
= o*[1 4 (¢ + &) (1 + ¢)] = *.(1 + ZE) say . . . ..o (9),
therefore

A=+ o(l + E).

Again, dividing by M — o® in (8), and putting ¥ = “=HE =D 62 in the small

terms, an approximate value of the second root, correct to first powers of ¢, ,, is
given by
O =T +(C
g0 (C — B) — gAC
(CZA)(C —B)

— A)C —B)
AB

ABM — (C — A)(C — B) o® = — €0

ag !
qC (C — A) — ¢BC (€ =4 EL_IE)
-_— EQ(DQ ’
C=MHC-8 ,
AB

or

C—A)(C—B C—b C—A
S CEC IS Y

:w[(’ A+el][0—§-3+ezq]. R ¢ 10))

to the same order of approximation.
This approximation involves the assumption that €, €, are small compared with
C—A C-B '

; the approximate value of the root will, however, be the same if we

A’ TB
J—A C-—B . :
suppose ¢ X p to be small quantities of the same order as ¢, «,.
Let us put
C—A C-B
S L TR

Retaining only finite terms in (5), we obtain as a first approximation to the roots
A = o® and A\ = 0; also, the independent term in (5) is a small quantity of the
second order in kj, Ky, €, € Thus the root which approximates to A? = 0 will be of
the second order. Regarding A\* as of the second order, and retaining only terms of
this order in (5), we get

A [4ABaBY] — o?. 4e?B2. {Bk, + ¢Ce} {Ax, + qCe} =0,
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ROTATING ELLIPSOIDAL SHELL CONTAINING FLUID. 477
or
N = m2.<K1 + q%q)(lcz +q %62>
= o”. (K, + g&)) (k + ge5)

to the same order, and this is the value obtained above (10).

§ 4. Application to the Case of the Eorth.

The nature of the two types of oscillation will be found fully discussed in the
Appendix. It is there shown that the oscillation corresponding to the root w (1 + E)
is that previously examined by Horkins in his ¢ Researches in Physical Geology,’
whereas the second type is analogous to the motion of a rigid body when disturbed
from a motion of rotation about a principal axis. '

If the Earth could be regarded as a system such as we have been considering, we
see that in addition to the ordinary Solar and Lunar Nutations, which would be of
the same nature as when the Earth is supposed solid throughout, there might exist
certain free nutations the amplitude of which could only be determined by observa-
tion. If the amplitudes were sufficiently large, the oscillations corresponding to the
root A = o (1 4+ E) would render themselves visible in the same way as the Solar and
Lunar Nutations, namely, by small periodic displacements common to all stars. The
period of these displacements would be 1/E sidereal days, and a knowledge of it would
enable us to determine E, a quantity which depends on the form of the internal
surface and the thickness of the crust.

The oscillations which correspond to the root A = wy/{(x; + g¢) (x; + g¢;)}
would manifest themselves in a different manner. They are, in fact, similar to the
“Rulerian” nutation (vide T1sSERAND, ¢ Mécanique Céleste,’ vol. 2, p. 494), and will
involve a small periodic change in the latitude of places on the Earth’s surface, as
found by meridian observations of a circumpolar star, this change taking place in a
period of {(x; + q€;) (xy + ge5)}~* sidereal days. '

Now it appears probable that in oscillations of long period, such as Precession, the
effects of fluid friction would be to make the internal fluid move with the crust
as if rigidly connected to it (TIssErRAND, ‘Mécanique Céleste,” vol. 2, p. 480, or
Lord KeLviwn, ‘Popular Lectures and Addresses, vol. 2, p. 244). Hence, if @,
@A, &€ be the principal moments of inertia for the Earth as a whole, supposed
symmetrical about its axis of rotation, the Theory of Precession will still enable us

a

to determine the value of ®é , a8 35

But, if we put x, = «, ¢, = ¢, and denote by M the mass of the fluid,

C=0C+ M= C {1+ q(L + 2¢)},
A=A+iM@+y)=A-+q¢C(1+¢)
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478 MR. 8. 8. HOUGH ON THE OSCILLATIONS OF A
Therefore,
C—-a_ C—A+q0q _m+q
€ T Cl4g+2a) 14y
very nearly.
Therefore the period in which the latitude variations will take place is

1 (%) 1 _
"t sidereal days = C-a ity sidereal days ;

when the Earth is supposed solid throughout, this period is

@ SD a sidereal days.

We thus see that if the Earth consisted of a rigid shell containing a homogeneous
fluid nucleus, the theoretical period of 305 days, calculated on the assumption of the
Earth’s rigidity throughout, would be diminished in the ratio 1:1 4 ¢, where ¢ is
an essentially positive quantity, whose magnitude increases with the size of the
nucleus. .

In order to form some idea of the magnitude of this effect, let us suppose that the
tluid and the crust have the same density p, and that », », are the mean radii of the
fluid nucleus, and of the Earth as a whole.

We then have approximately

p = v = 1% mprie and C = & mp (r® — 7).

Therefore,

q = A A
: C 7S —

_ I A
PHe= Lhg= ) <>

2 \b
and the period will be diminished by <;’—> X 305 days.
1
Taking the mean radius of the Karth as 4000 miles, we obtain the following table,
where the first line gives the thickness of the crust in miles, and the second the

diminution of the period in sidereal days :—

Thickness of crust in miles . . . l 2000 1000 500 l 250 t 100

Diminution of period in days . ’ 5 ' 21 156 | 221 t 269
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Now, although in the light of Professor NEwcoms’s work (‘Astron. Soc. Monthly
Notices,” March, 1892), it appears probable that this effect would be modified by the
elasticity of the Crust, it could scarcely be reversed if the fluid nucleus were of any
considerable extent. We must, therefore, conclude that the observations on latitude-
variation, so far from establishing the existence of a fluid interior, as supposed by
M. Fouir, rather tend to confirm the views hitherto maintained by physicists on
other grounds, that there can be no internal fluid mass of any considerable extent.

APPENDIX.

TREATMENT OF THE PROBLEM BY LAME ANALYSIS.
§ 1. Equations of Motion of Fluid.

Let us refer to rectangular axes rotating with angular velocity » about the
axis of z. The fluid is supposed to have no motion relatively to these axes other
than that due to the small oscillations with which we are dealing.

Let u, v, w, be the velocity-components at any point a, y, z relatively to these
axes : we shall, as is usual in small-oscillation problems, neglect squares and products
of the small quantities u, v, w.

The actual velocity-components parallel to the instantaneous positions of the moving
axes will be

U— oy, v+ or, w,
and the differential equations of motion of the fluid are therefore (Bassr, ¢ Hydro-
dynamics,” p. 22)

%ot ) —on= (V= 2)

)

b

Ed

P1
0 0
—a—;——}-w(’l,t—wy)—l-wu:"‘(Vl——-g;

dy
ow 0 P
5 = (V= 5)

where V is the gravitation-potential of the forces to which the fluid is subject, p the
fluid-pressure, and p, the density.

Putting ; a
Y=Vi—plm+ ) ()

the above equations reduce to
ou /ot — 20v = Oy/ow
w/ot + 20u=00y/0y ». . . . .« - . . . (2)
ow/ot = oY/ 0z
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480 MR. 8. S. HOUGH ON THE OSCILLATIONS OF A
We have, in addition, the equation of continuity
dufdx + /oy + dw/ez=0 . . . . . . . . (3).

Equations (2), (3) are sufﬁment to determine w, v, w, ¥, subject to certain boundary
conditions. :
From (2) we obtam

F ], Y VR
[8152 T 4o ]“ = el T 297,
i o], — P o |
[atz+4w]1)__ayat——2m . P e e (4.
Pw o
o T ozt 5

Applying the operators 0/0x, 0/dy, 0/0z, and adding, we obtain by means of (3)

Cow o
— 4o? A= (Vlll) Wherevg_az—f-aj + pep

or, by the third of equations (2),

y @
WL S (=0 . . ... ()

This is PoincarE’s differential equation for the oscillations of a mass of fluid about
a steady motion of pure rotation.

Let us now suppose that the system is executing one of its component harmonic
vibrations.

Assume that

U = u e, v = v, w = we

= e,

u\t

and

Putting these values in (4), (5), and dividing out by the time factor, we get

. 1 a\h a«;ﬁ R
ERETEEY { Iy }
]‘ . a\b‘ ¢ a’\ll‘
V= szm {?)\"‘é‘j — 2w 'ﬁ;}l} } . . . . . . (6),
10

while s, satisfies the equation

Py Py 4o’y Py _
A (o A I ()}
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§ 2. The Boundary Conditions.

The position of the shell at any instant may be defined by means of three coordi-
nates, 6,, 0, 05, which denote the small angular displacements, about the axes of
reference, of the shell from the position it would occupy in the steady motion.

The displacements parallel to the coordinate axes of the point of the shell, whose
coordinates are (z, v, 2), are

- — yby + 20, — 20, + x0,, — a0, + y0,.

If cosa, cosfB, cosy be the direction cosines of the normal to the undisturbed
surface, the normal distance between this surface and the displaced surface will be

(— yb5 + 20,) cos a 4 (— 20, + x05) cos B + (— b, + yb,) cosy
=0, (y cosy — zcos B) + 0, (2 cos o ~ x cos y) + b5 (xcos 8 — y cos a).

The condition to be satisfied at the boundary is that the rate of increase of this
length must be equal to the component velocity of the fluid, relative to the moving
axes, in the direction of the normal to the undisturbed surface. Now as these rela-
tive velocities are all small quantities whose squares we are mneglecting, it is
unnecessary to distinguish between the velocities at the disturbed and undisturbed
surfaces ; thus, at the latter surface we require

u cos & 4 v cos B 4 weosy = 0, (y cosy — z cos B)
+02(zcosoc—wcos-y)—l—493(vccos,8—-y005a).

Putting 6, = ¢'1¢™, &c., and omitting the exponential factor, we obtain

uy cos e + v cos B+ w, cosy = A [0, (y cosy — z cos B)
4+ 0y (zcosa — xcosy) + &5 (xcos B — ycosa)l;

or, putting in the values of w,, v}, w;, ¥, from (6),

m{a\#lcosa—l- Lcos B+ a~cos <1—éa—)%>}

A2
Qw1 a\[rl Wy
— T { 3y 008 & — 47 cos ,3}

= M1 (y cosy —zcos B) + 6, (2 cos a — xcosy)

+03(xcos B—yecosa)] . . . . . . . . . . (8)
Let us now put
4,
1-——;;;:7, =72

MDCOCXCV.—A. : 3 Q
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Corresponding to any series of points whose coordinates are denoted by (z, y, 2),
we shall obtain a new series whose coordinates are (x, v, #'), which will be real or
imaginary according as \? is greater or less than 40’ We will take as the standard
case that in which A?> 4? ~

If the point (, y, 2) trace out any surface whose equation is f(x, y, z) = 0, the
corresponding point(z,y,2") will trace out a new surface whose equation is f'(x,y,72') = 0.
The part of this latter surface which corresponds to the real part of the surface
S (x, y, z) = 0 will, however, be purely imaginary if \* < 4”

If (cos a, cos B, cos y), (cos &, cos B, cos y') be the direction-cosines of the normals
to the two surfaces, we have

cos o’ :cos B :cosy = of/ox : 9f /Oy : Of /02
= 0f/0x : 9f | 0y : 7 (df ] 0z)
=cos a : cos 3 : T cosy.
Substituting in equations (7), (8), the differential equation for ¢, takes the form
O [0x® A O [0 4 Oy [P =0 . . . . . . . (9),

while if £ (x, ¥ ,2) = 0 be the equation to the undisturbed boundary of the fluid,
must satisfy the equation

Ny O N, S . [0y p_ 0
)\'{kéx cos o' -+ o cos B +a—zl<,os7/}—2wz{~ay cos &’ — o cosB}

0, <~z— cosy — 72’ cos ,8’)

— (de? — N2 / .
= (1o* =M)A. + 6 <rz’ cos o’ — % Cos y’>

-+ 0, (xcos B — ycos &)

(10)

at the surface f(z, y, 2') = 0.
The problem of finding the motion of the fluid is thus reduced to that of obtaining
solutions of equation (9) consistent with the boundary condition (10) at the surface

Sz, y, 7)) = 0.

§ 8. Case of Ellepsordal Surjface.

Hitherto, no assumption has been made as to the form of the surface of the fluid.
Let us now suppose that it is given by the equation

=1 . . . ... ()

o L]/«« -

2T 2
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that is to say, that it is an ellipsoid whose principal axes coincide with the axes of
reference. ’
We will take as the standard case, that in which

pP>c >0 >0
Put
pP— = (p* — o) 2

The equation to the auxiliary surface f(x, v, 72") == 0 becomes

22

SLEtEI AT W)

7 +

Let us now introduce two sets of elliptic coordinates (p, ms v), (p's 'y v'), connected
with (z, ¥, 2) (2, ¥, ?) respectively by the equations

L __w v V@ —-bﬁ) @ — ) r AN E=) (=D (11')
p b JE =) /@) O =) /(=) ‘ ’
z _ MY y V=@ =) AR L Gy | Gt i R
P VP e W I IV e s Ry e R e

p’ will be equal to p for points which lie on the surfaces (A) (A’), but not otherwise.
Let us also put

X=uwlp, Y=y//(p"=V), Z=2z//(p*—&)=7//(p"—?), . (13)
for points on these surfaces; so that X, Y, Z are subject to the relation

X+ Y 4+Z=1 ... ... ... (B

X, Y, Z may therefore be regarded as the coordinates of a point lymg on a sphere
of unit radius.
Denote by R, M, N three conjugate Lamé functions of the elliptic coordinates
p> #s v, and by R’, M, N’ three similar functions of the coordinates p’, w', v/
A form of solution of equation (9) convenient for satisfying boundary conditions at
the surface (A’) is )
Y =3ZARM'N . . . . . . . . . (14).

The effect of the fluid on the motion of the shell will depend only on the fluid
pressure over the surface, and this by (1) will involve the value of s, at the surface.
3 Q2
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To find the value of i, at the surface (A), we may transform the expression (14) for
Y, first to the surface (B) and then from (B) to (A).

Now, by a known property of Lamé products (vide HEINE,  Kugelfunctionen,’ vol. 1,
§ 89), if M, N be two conjugate functions of order n, the product MN at the surface
(A) will transform into a surface harmonic of order n at the surface (B); and, con-
versely, any surface harmonic of order n at the surface (B), when transformed to the
surface (A), can be expanded in a series consisting of Lamé products with constant
coeflicients, each of which products will be of the n™ order.

The same conclusions will hold for the surface (A’) and the sphere (B).

We can thus express the value of ; at the surface (A) in terms of a series of
Lamé products, in which each term will be of the same order as that from which it
arises in (14).

The couples on the shell due to fluid pressure are

”p do (y cos y — z cos B), ”p do (2 cos y — x cos f3), ”p do (x cos B — y cos y),

where do is an element of the surface and the integrals are taken over the whole
surface.
If P denote the perpendicular from the centre on the tangent plane to the ellipsoid

P
A)and ! =
(&) an PV (= 1) (p* — &)

! L 1 _ Pp@=b)
RGN

ycosy — zcos B = Pyz {pg—-cgmpgmbg

and Pyz is proportional to

W= )& = ) /(0 =) (¢ — ) = IM,N,,

where M,, N; are two conjugate Lamé functions of the second order. But, if MN be
any two conjugate Lamé functions different from M;N,, [[MNM N, do = 0. For, if
we transform to the surface of the sphere (B), I do is equal to the corresponding
element of the spherical surface, and MN, M;N; transform into two different surface
harmonics. v _

Thus the only term in 4, which can give rise to any couple about the axis of = will
be the term involving the Lamé product M,N,. '

Similarly the terms which can give rise to couples about the other axes will be of
the second order. These, as we have seen above, all arise from terms of the second
order in (14), and, in order to evaluate these couples, it will be unnecessary for us to
calculate any coefficients in ¥, other than those of terms of the second order.
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§ 4. Transformation of Boundary Equations.

Let us now transform our boundary conditions to the surface of the sphere (B).
We can at once express the right-hand member of equation (10) in terms of

A A

SOCIETY

OF

A B

SOCIETY

OF

X,Y,Z; for '
, Pz P'X
cos of = ——— = =
p” P
. Dy P’Y
cos B = P = s
N Pz
[ VI BN
where P’ has the same signification with reference to the ellipsoid (A’) as P has with
reference to the ellipsoid (A).

The right-hand member therefore becomes
_.)@72.13'.[0'1 =P vz40,—D _gx4e,— 0 XY] (15).

’ V(PP =) (p* — &) Py (P = — &) P/ (p*—0%)

Consider next a single term of order = in ¢, say ¢, = R'M'N’. We have seen
that M'N” is expressible in the form €S,, where € is some quantity which does not
vary over the surface of the sphere (B) and S, is a spherical harmonic function of
degree n in X, Y, Z.

If dn’ denote an element of the normal to the surface (A'), we have P’ dn’ = p’ dp’,
and therefore,

‘hcosa + N ! cos B —y—élb:}-bos'y = %’?—;%\:}

Now M/, N’ are independent of p’. Therefore, when ¢, = R'M'N’,

Ny , , TR ., POW |

o cosw—]—alcosﬁ—l--a—,cos'y p’a’MNZFBp"GS” . (16).
Next let ds be an element of a line through (x, v, ') whose direction-cosines are
< _XEE B: , LS a: s 0) , and which, therefore, lies in the surface (A").

sin " 7 sing'”? 7,
Then
%«Zl cos &’ — \h cos B = sin y’ ‘1"
and when ¢, = RM'N" = R'eS,,
%%12 aa‘( R'¢). S, + Re. a_s_,_, N 14
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Now, the element ds lies entirely in the surface (A’), and corresponding to every
point of it there will be a point X, Y, Z which lies on the sphere (B). Hence, as
R, € do not vary over the surface of the sphere, they will remain constant as we
pass along the element ds. Thus we have ’

PN O (Re) =

and, therefore, from (17)

g\__k‘_l — Rl @-. e R[ {asﬂ as +

0S, oY . oS, oZ
0s oX’ }

o T a7 o

But from (13) we see that

X _ 1 1 < oo B~/> = Py cosec Py cosec

s p 3 p\ sing/)T  p(P—0) V= T /(@) 14
v__ 1 w1 <COS “l> P ; cosec _PX eosec v’
s VP B Ve =) \siny) T /(o — Y= o =) ey
BZ 1 07 — 0.

TV =)
Therefore,
oy, PLRe

03, s, ,
& = o =) {X —-Y 5X}cosec v,
and

/ , P Rle oS, oS,
—hcosa - \h cos B = siny 5‘:’ = G {X YaX} . (18).

From (15), (16), (18) we see that the boundary equation, on the assumption of the
form (14) for ¢, takes the form

A {EA/ _a_;_[} Gsn} — QGJZ{EA_/ ‘23_6“2( oS, —-v abn>}
P Pt b

op’ oY oX
— —\32l p (¢ —1) , _(=¢ ) / v .
= {elV(Pg_bg) A YA+ 0, DS IR 0, XY} (19).
08, 98, . . . . .
Now the function X 7~ 3y -Y ax 18 itself a spherical harmonic function of order n,

and both S, and Xa—; —-Y é—}é‘ may be expressed as linear functions of the 2n 4 1

independent harmonics of the nth order.
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Omitting for the present the terms of the second order, if we equate to zero the
coefficients of the 27 4 1 independent harmonics, we shall obtain a series of 2n 4 1
linear equations connecting the 2n + 1 quantities A’ which occur with Lamé products
of order n. These equations show that all the quantities A’ vanish except for certain
values of A which satisfy the determinantal equation obtained by eliminating them.
The roots of this equation will determine the possible periods of free oscillation, and
when the system is oscillating in the mode corresponding to any one of these roots,
Lamé products of one order (n) only will appear in ;.

These modes of oscillation do not involve any motion of the shell, and it is evident
that they could not be generated or destroyed by any disturbance communicated to
the shell, if the fluid be free from viscosity.

We proceed now to examine more closely the modes which depend on terms of the
second order. As we have seen above, terms of different orders correspond to different
fundamental modes; and therefore we may for the future suppose that the second
order terms alone exist in ;.

§ 5. Lamé Functions of Second Order.

A Lamé function of order » 1s a function R of one of the four forms

R=P, R= \/pz——bz.Pn_l, R = \/PQ"Cz-Pn_l, R:A/(p2~b2>(P2—-cz).Pn_2,

where P, denotes a rational, integral, algebraic function of p of degree n, and R
satisfies the differential equation

(=) (= ) i+ p (2 =B =) P = [n (k1) p* = B]R . (20),

where B is a suitably chosen constant.
The Lamé functions of the second order ave, therefore, the three functions

WEST, pE=¢, VE=PIE= . . . (@)
together with two functions of the form p*+8. . . . . . . . . . . (22)

To find these latter functions, substitute in equation (20) with n = 2; we obtain
2 (p* — V%) (p° — &) + 20" (20" — 1* — &) =(6p" — B) (o + B)-
Equating coefficients of p? and the terms independent of p, we get

— 4P+ =68—B, 2% = — @B
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488 MR. 8. S. HOUGH ON THE OSCILLATIONS OF A
Eliminating B, the values of 8 are given by
3B+ 2P +A)B+P=0 . . . . . . . (23)
Let us now apply the formulze (16), (18), to the different forms of R’ ; take first
R = 5/ — ).

At the surface

M'N' = '/ (W2 = ). v/ (B® — v?) = 6°V(°”“b)mq—bzc¢(c'z ). XY.

Py (p* — V%)
Therefore, when ¥y, = R'M'N’,
from (16)
B«h cos o’ —I— % - cos B + b teosy =P’ ;)—\%;;—;%2) bzc’\/(c'z—-bg).XYW!
from (18) | _ 1> (24).
o cos o/ — —‘h cos B = P 0%/ (c* — %) . (X* — Y?) |
oy ' J

Similarly, when R’ = p’4/ (p* — ¢"?),

M'N' = bc?/(c* — 1) XZ at the surface,

and
‘h cos o + W gog B + @15;1 cosy =P M b/ (c? —1?) XZ,WI
dy 0z P/ (p* — L (25)
/~2_:“7§ I ’

J

and when R' = v/ (p? — %) (p* — ¢?),

M'N’ = be’ (¢ — b?) YZ,

‘h

Y1 . Y 20 = 1 — o? "2 T2 w
cos o + % O B + rcosy =P Vo = be’ (¢ v?) YZ, ‘> )
o [

J

"Y1 ’ a‘l’l ’/___ /M(PQ—G/2)~/ ,
aycosa——~%cos,8_P wpwbc (¢* — ) XZ

Take, now, the form (22).
When

= (p*+ B), RMN = (p* + B) (1> + B) (»* + B);
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but p? u?, »* are the three roots of the equation in

R 2 2
& Y %
.o o9 —

b* a—69:= L,

therefore,

(& = p*) (e — p*) (@ —1*) = (& — b?) (« — ) — & (@ — b?) (@ — ¢?)
— o (o — %) — o (o — b?);

putting @« = — @B in this identity, we obtain

RMN = (B+p) (B4 p¥)(B+ ) =B(B+ 1) (B + ¢ :
+ @ (B 4+ %) (B+ &)+ ¥*B(B+ &) + 2B (B + ¥,

and, therefore, at the surface

RMN = (X? + Y2 + 2°) 8 (B + 1¥) (B + &) + p°X%.(B + 1?) (B + )
+ (0= )Y B(B+ &) + (p* — o) Z2.B(B + 1Y)
=P+ BB+ B+AX+BB+A) T +BB+1)Z],

or, since by (28) (8 + b%) (B+ ¢*) = — B(B + ¢*) — B(B + 1),
RMN = (5 + £) [8 (8 + &) (¥° = X) + B (8 + 1) (2 = X,
therefore, when R’ = p* + 8,
MN' = B( + %) (Y° = X2) 4 (8 + 1) (2 - X)

and if ¢, = R'M'N’

\hoosa’-‘"al OSB’+8 COS'y
| = 9P [ (B + o) (V' — X) + B (B + 1) (%2 = X9 . (@),
and "
0 ’ ’ ! . . T
%ZJCOSa'_—é\%COSB =P p&(t’g b2>2XY{218 (:8 +02)+B (B +b“)},

or since B’ satisfies an equation similar to (23),

R

Proosa’ — Gt aos fl = — P e 5 2XY (4 BB} . (28).

Py (p*—

Let us denote by 8}, ', the two values of B/, and assume that
MDCCCXCV.—A. 3 R
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Y= A (P/2 + :8/1)(1“/:2 + :3/1)(”’2 + B+ A, (PI2 + B,z) (#'2 + B (v* + 18/2)

e PV = ) = B SO =)
B' ’ 7 14 ’ /¢ 22 4 19, /9
mp V(p? = ?)p” (P = pB) (e — )

+ - (5;5, \/ (p? — bg)(/o/’2 7)o/ (0? — 0*) (¢ — ). (BP — v'?) % — o).

_I.-

From equations (24) . . . (28), we see that (19) now takes the form

2A,{B1(B1+ ) (Y* — X*) + B, (81 + V") (Z — X*)} -
£ 284 ,3’ (B' + ) (Y = X3) 4 B3 (B + V) (22 — X?)}
0% — —¢'? 2p* — B* —¢?
+B1 \/ XY+B \/p’—c'zXZ+B3\/(p2—b2)(p2-—6'2)

— 2A,02(8 + o) (o B)XY — 28 (B + o) (¢ + ) XY

YZ

2 ‘ PO X 9 o g
p\/@m 3| T Bipvp? — (X2 = Y7) — Bypv/p? — * V7
) + B, /(7 = 1) (pg — ) XZ_
v o & — .
= — e, Lal o Y O . \/ - XY] (29).
§ 6. Calculation of Coefficients in .
Equating coeflicients of Y? — X?, Z* — X? in the two members of (29)
A ’ / ) A / / 3 92: B — O l
1871 (B + ¢?) + Ay (B + ¢?) + 1 . (30).

AL (B + 1) + A8, (B, + 1) =0

Multiply the first of these by 2 and add to the second. Reducing by means of
(28) we obtain

b[— A, (¢? +ﬁ’1)-—A(c’2+/8)]+‘m B,=0 . . . . (31)

Multiply by % and subtract from the first of equations (30) ; then

AP+ B (4 B) + Ay (5 + B5) (4 B + 2 (1

\

2p?
B > B, =o.


http://rsta.royalsocietypublishing.org/

A A

L

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

%

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ROTATING ELLIPSOIDAL SHELL CONTAINING FLUID. 491

But if we equate coefficients of XY in (29) we obtain

4wt

B, (2% — 1) + 2 [A, (52 B) (¢ B1) + As (o4 ) (7 BY)] = — Nrto0),
Hence
B, (2p° —b2)+ B (0* — 2p°) = — N%%50°,
or
B, (2p* — %) ¥ = — NP0 D2,

or

A2 ,
B = - 5= bqﬂ..........(32).

Again, equating coefficients of XZ, YZ in (29), we have

2

2p> — " 0l o V/(p*— ") /
B A=t o ®p M) g,
TpVp =) AT ) (=)
B 2p% — b? — ¢ anB AV (p? — —-c) RCRY ¢ — b?

WVE = - o TN e VE-HE -

or, since p? — ¢ = 7% (p® — ¢?)

B, (2% — %) — "0 By (p° — o) = Nrllye® l
oo | (33).
By (2p° — 1® — ¢*) + - By(p* — ¢*) = — N (--bz)Jl

Now, as we have seen above,

A, (PIQ' + ﬁll) (Iblz + :3/1) (1/2 + :3'1) + Az (Pl2 + Blz) (w?+ 18/2) (sz + :8/2)
= A {B (B1+V%) (B4 +a* (B +17) (B1+¢%)+ 4B (B 1+¢?)+2*B1 (81+D°)}
+ A {B, (B3 +0%) (By ) 4a* (Bo+0?) (Bet+c®)+4°B (Bt )+ 2785 (By+17)}

which by (80) is equal to

BB (B 1+ V) A (Ba+ W)k 226 (A, (81 1)+ Ag(Bs+ 1)} +9°{ — % B}
=4 (B1+ B) {3+ ) B1 =4V} + Ay (B2 + ) {— § (B + ) By — 30
+ 2B @—y),
3R 2
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and this by means of (30) and (31) reduces to
{— 30+ (2* — ")} “;—z B,
Hence the complete value of 4, is
2B, {— 30+ o* — 4} + By + By’ + By
= %B] {-——3;71)2+962—y2}ﬂ—chy-l-%g -’I?Z-l-l—i‘“’"?/z e (39)

where By, By, B; are given in terms of ¢, ¢, ¢'; by equations (32), (33).

From equations (6), (34) it will be seen that, in the motions with which we are
dealing, u, v, w are linear functions of , 7, 2. Hence the components of molecular
rotation of the fluid, which involve first differential coefficients of u, v, w, will be inde-
pendent of @, y, z. This justifies the assumption made in § 1 of the paper.

§ 7. Calculation of Couples on the Shell due to Fluid Pressure.

At any point of the fluid the pressure is given by (1) ; we have, viz.:—
P=p {Vi+ 1 (2 +9)} — pi

Let us now refer to a new set of rectangular axes, Ox;, Oy, Oz, coincident with
the principal axes of the ellipsoid in its displaced position. The direction-cosines of
one set of axes relatively to the other are given by the scheme

&y Y )
(35).
¥ 0 1 —0,

Hence
@ = — Y05 + 2,0,
Yy =1y — 20, + 0,
2 =2z — 2,0, + y,0,,
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and, neglecting squares of 8,, 6,, 6;, we obtain
p=p[Vi+30° (2° +9)°) — y20, + SP2zb] — prp . . . (86),

where in the small term y we may replace «, ¥, z by x, ¥, 2,.
If L, M, N denote the couples on the shell about the axes Oz, Oy,, Oz,

— Py, P.7/121 - ¢t — b? 7
L= .]’p d { 3 _ 2 - pz__bfl} - (pz_bg) (p2—62) ”P]Oylzl do’,
_ Prz  Pomy | _ - , :
M= ([pde{™0 = 001 = 20 ([Ppae, do,
— (. Py, Pay | _ A
N—[pdc{pg_bg pg } “"p2<p2__b3)j:[ prlg/ldo;

where do is an element of the surface of the displaced ellipsoid, and the integrals are
taken over the whole surface.

Let us now consider separately the parts of these couples introduced by the
different terms in the expression (36) for p.

(o) Take p = p, V..

The pressure at every point is the same as if the fluid were at rest under a
potential V.

V, will, in general, consist of three parts due respectively to («) the attraction of the
shell ; (8) the mutual attraction of the fluid particles; (y) any external attracting
system.

If the part («) gave rise to any couple, it would be exactly counterbalanced by the
couple on the shell due to the attraction of the fluid, since the attractions of the shell
on the fluid and of the fluid on the shell are equal and opposite.

The system of forces (B) also form a system in equilibrium, and, therefore, can
give rise to no resultant couple on the shell. Thus no couple can arise from the
mutual attractions of the parts of the system. '

The pressure at any point due to the part (y) is the same as if the fluid were at
rest. Thus the couples due to any external attracting system will be the same as if
the fluid were supposed to be solidified. If we add to these couples, due to the
attraction of the external system on the fluid, the parts due to the direct attraction
on the shell, we see that the total couples due to any external system will be the
same as if our system were solid throughout.

(b.) Take
P = %%y (2 + y1°) — o®piz; (116, — 2,6,).

Integrating over the surface of' the ellipsoid

‘T’l

./1 G D,
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we have

”P do 2%z, = 0, ”P do y*2, = 0,

[[Pdoyiss = domplyt 12— e

Therefore,

[ T
and the corresponding part of L is
— T57p1.p (p° — V) (p" — &) (& — 1°) 0.
Similarly the parts of M, N arising from this part of p are
dsaprp(p* = W) (5 = &) (= &) a0, and 0.
(c.) Lastly, if

o [0t B B
p=—pP= — pe™ ['% B, {x* — 92 — 10°} + By, + :2_ 2 + 73 ylzl] ;

il ' ) o ; B, .
‘(Pg Z W) (= ) pr Yz do = — tmp, (2 —12) p (p° — V)t (p® — )} _';'i e,
— ——cﬁ—g [ — 4 2 LI SAY WiSt) 2\% B2 Nt
2(p2_%“"1)pz1901d0' + & 7p,Pp (p2 — ) (p* — &) e,
—_‘—_‘_bg [ — 5] 1 o
P (p? — b*) J’ ) Pp gz do = — % mp,b%p (p* — V?)} (p* — °)F Bre™.

Collecting the different parts, we obtain for the couples, provided there be no
external disturbing force,

~

L= —mp. plp* = U (p" — &) (¢ = V7). {wzﬂl + Bfe"“}

. B, .
= o fo, 4 B

T

M=t s mpy. p(p = U)o — ) { e — o,

SL AR

T

N = —gmp,.p (p* — V) (p* — &) 1. Bye™

= (p — ») Be™
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where, for brevity, we have put
v=y5mpp (PP =0 (p* — @) (* = V%), m=vhmp,. p(p*— 1) (p—c?)ic® . (38).

The terms in ® arising from (b) are due to the centrifugal force of the fluid, and
occur in consequence of the axis of rotation of the shell not accurately coinciding with
that of the fluid, while the terms (¢) are due to the effective inertia of the fluid.

§ 8. Dynamacal Equations of Motion of the Shell.

Let A, B, C be the principal moments of inertia of the shell; p, ¢, » the angular
velocities about the principal axes.
The position of the shell at time ¢ + 8¢ may be found from its position at time ¢ by

L st, Loy

giving it a small rotation o &t about Oz, followed by rotations %% ot, B 7

about the positions of the axes O, Oy, Oz at time ¢ -+ &¢.
The direction-cosines of these latter axes referred to their position at time ¢ are

(1, 08, 0), (08, 1,0), (0,0,1).

Hence, resolving the rotations in the directions of the axes Oz, Oy, Oz at time A
the component angular displacements are

0,8, 0,8, (o6t
and the angular velocities about the axes Ox, Oy, Oz are
év 9.2, o+ (93.
Resolving these about the axes Oz, Oy, Oz we see from the scheme (35) that
p:él—wﬁg, q=¢9'2+w91, r=w—l—-0.3 .o (39).
EuLER’s equations of motion are
Ap—(B--Q)gr=1,
Bg —(C— A)rp =M,
Cr — (A — B)pg = N,

where, if the system be subject to no external disturbing force, L, M, N have the
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values given in (87). If there be any external attracting system we must add to the
right-hand members the couples due to this system, estimated as though the system
were rigid throughout. In dealing with the “free” oscillations, however, we may
omit these terms.

Introducing the values of p, ¢, » from (89) and omitting small quantities of the
second order

A, — (B — C) 0, — b, (A + B — C) =1,
B, + (C— A) o, + of, (A +B—-C)=M
o, =N.

Hence, on replacing L, M, N by their values (87), putting 6, = ¢/,¢", &c., and
omitting the time factor, we obtain

oz}

0

Il

3

0, {AN + (B — C) 0*} + Awly(A+ B —C) —» {“’20,1 n } WI ”
b (40

l

J

0, (BN + (A — C) o} — ol (A +B—C) —p {w% — 132—} 0
0, (0] —(u—nB, =0
from (32)
AN
Bl = — :?";‘QM:“Z)’E' 9 ae

Hence the freedom defined by the coordinate f; is neutral, and a disturbance,
which causes the coordinate 6, to vary, will not give rise to an oscillatory motion.
From (38) the values of B,/r, By/7 are given by ‘

B 9 7 201 B 9 ’
TQ(ZP” 2)——;——3(2_—02)—)\2@392__0

|
Lo (41).
2= NS =) =0

. 9 b
By (2/02 —_ D — 0'2) _1:_ 2wt
T

Eliminating @', 05, By/7, By/r from (40), (41) by means of a determinant, the
periods of free oscillation are given by v

AN+(B=C—»)e?,  o(A+B=C), 0, —»
—o (A+B—C).  BNR+(A—C—p)o?, o 0
0, —N¢?, 2p%—c"?, — 2:% (p*—c?) =0
N (2 —D%), 0, ?f"l’ (PP—c?),  2p*—bP—c?
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§ 9. Reduction of Period Equation.
Expanding out this determinant, we obtain

[{AN = (C — B +») o} {BN — (C —A+p)e*} — o™\ (A+ B— Q)

497

% |:(2p2 _ 012) (2p° — 1? — ¢?) — 4o? (o* — C/z)z]
’P A2 p

+ peN {AN — (C — B 4 ») 0%} (2p* — 0* — ¢?)
F v (> =) N {BN — (C — A 4 p)o®} (2p* — ¢7?)
— 20\ (p* — ) (A 4+ B — C) {u (¢ — 0*) + vc?}
+ pr (P —=D)\t=0 .
Now since
4e®

p— == ) = (1= 0) (0 = ),

9, &) 79 460;3 © DAY
(20 = o) (26" = B = &) = 55 (5 = &

=P =)+ (=) (= )+ (= ey (1= )

]- ) 9
= 5 AT (P = ) 4 (20 = 0¥) (p* — &) + (p* — )}

1 9 9 Q2
= s 00 (26 = ) (26° = 1F — &) — do? (5" — 1))

P} P 73 1 ] Q9
20" =0 = "= {7 (0" = ) + (p* — &)}

and

Q Iz 1 B '1
20" — % = {70 + (p° — )} = 555 (N (20 — ) — do?p?}

Hence substituting in (42) we obtain the following cubic for A*:

[{AN — (C = B+ )0} (BN — (C — A + 1) o} — o2 (A + B — O)]

(42).

. (43).

X [ (20 — B — &) (26 — &) — 40p® (p* — )]

4 HONLIAN — (C — B+ 2) 0?} (M (2p° — B — ) — da? (p° — 1?)}

Fv(c? = )N A{BN — (C — A + p) 0} {N\?(2p" — *) — 4%}
— 204 (p* — ) (A + B — C) {u(¢®* — b*) 4+ vc?}
4+ pAt (A — 40®) A (P — bF) = 0.

MDCCCXCV.—A. 3 s
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Let us now change our notation, replacing p? p®— 0% p* — ¢ by o2, 3, y?; the
period equation may then be written

[{AN + (B —C —v) 0"} {BA+ (A — C —p) 0’} — N\ (A + B — C)?]
. X [N (a2 + 7%) (B + 7) — do'e?B]
(e = ) (AN (B = O = 1) o} V(B + ) — 4o
v (B — )N {BN 4 (A — C — p) o*} (N (o + 7*) — 40’}
— 2002 (A + B — O) (4 (B — ) + »(# — 1)}
Fpdt (N — 40?) (=) (B =) =0 . . . . . .o (44)

If we put A = ? the left-hand member of (44) becomes

W [(A+B—=C—=»)(A+B—C—pu)— (A +B~CP[(«*+9*) (B + y*) — 42°57]
+ o (@ — 7%) {A 4+ B — C — »} {y® — 3%
o (8= ) (A+ B~ O = p} [y — 307
= 20" (A + B = C) {u (B — 7°) + v (#® — ")} — 8pwol (o — ") (B — ¥")
=—o'(A+B—-C)|

p {(2 497 (B 7)) — 4?8 4 (=) (y*—8B%) ~ 29 (y*— )}
e (@A) (B — 4B+ (P — ) (VP — Bad) — 27 (P — )} |
ot (6 7) (B + ) — 1688+ (77 — ) b — 98

= B = 3 = 3 — ) (7 — ) =0

therefore \* = ? is always one root of (44).
Arranging (44) according to powers of A% we have

CAB(# 4 ) (B 4+ )+ pA (B4 ) (¢F =) + VB (o + ) (B =)
(@ =) (8 — ) _
— o\ (@492 (B4 {(A+B—CP—A(A —C—p)—B(B—C—)} +4ABa2B”

—p (e =) {(B+ ) (B—C—v) —4A8%}

— v (8 — ) {(& + 7)) (A — C — p) — 4Ba?}

+ 2y (A + B = CO){p (B — )+ v (& — ¥°)}
A (@ — ) (B — )
+ oV (@ + ) (B +y)B—C—2)(A—=C—p)
+ 4228 {(A+B—C) —A(A—C—p)—B(B—0C—y)}
= 4B =) (B = C —») — wwa® (B2 — ") (A —C—p) _

— o 4’ (B-C—-v)A—-C—p)}. . . . . . =0

A6 |

Dividing out by the factor \A* — «? we are left with
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MOA (B + ) + v (B = ¥)][B (& + 7)) + p (2 — )]
=N (& + ) (B+9)(B—C—»)(A—-C—yp)
+40°8{(A+B—C)’—A(A=C—p)—B(B—C—»)—(B—C—»)(A—C—p)}
= 4pB . (o —7?) (B=C—v) — 4ve? (B — ) (A= C — p)
+ ot {4*BF(B—-C—») (A —-C—p)} =0,

or
MUAB 4+ 7))+ v (B = )][B (@ +9) + p (o — 5]
— N (4 ) (B +y)B=C—v)(A=C—p)+ 4B (A4 ) (B+p)
_+ 4uBy? . (B— C —v) + vy (A — C — p) _
ot {4'B B —C—r)(A—C—pw)}=0. . . . . (45)

In order that the system may satisfy the criteria for ¢ ordinary ” stability the roots
of this equation in A* must be real and positive.

The period equation (45) agrees with the equation (5) (§1), and the solution of it
in the case in which the ellipsoid differs but slightly from a sphere is given in § 3.

H

§ 10. Nature of the Oscillations.

From equations (40), (41), (43) we see that the equations giving the ratios of the
quantities ¢, ¢y, B,/7, By/r are

0’ {AN + (B —C)o?*} + M0l (A+B—C)— v<w29'1 + I;ﬁ) = 0\

TN

L. (40).

— (N d0) (2 —p?) = 0

B .
;_g ()N — 40’0} — 2wthy? -]3_—3

2B+ )N 40 + 209 D 00— ) (=) 0, 0

(@). We have seen that in every case \* = o is one root of the period equation ;
when A = w the equations (46) reduce to

O {A+B—C—=2} +i0,(A+B—0)—v-2 =0,

oA +B—C—pl =it (A+B—C) 4 =y,

B, , . B ,
ror (V¥ — 30%) = 20" =L 4 3 (o? — ) 0y =
B,

: o B ,
0= 38) + 20 3~ 3(8 =) 0, = 0,

Tw?
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which are satisfied by
= —ily= — %= — 2
1 2 Tw? T

Suppose 0, = ¢e“*9 where ¢ is a real quantity ; we have as one solution
01 — ¢ei(wt+e)’ 02 — i(ﬁei(wH-e). ’
Changing the sign of ¢ wherever it occurs, another solution is given by
01 — ¢e—i(wt+e), 0, = i¢6—i(ut+e). |

and this corresponds to the value — o of A.
Combining these two solutions we get as the real motion corresponding to the root
N = o,

0, = 2¢ cos (wt + €), 0, = — 2¢ sin (wt + €).

Now 0,, 0, serve to determine the position of that principal axis which in the
steady motion coincides with the axis of rotation, relatively to axes which are
themselves revolving with angular velocity .

Let us consider the angular displacements relatively to fixed axes O¢, Oy, O
coincident with the position occupied by the moving axes at the time ¢ = 0; they
are

6, cos ot — 6, sin wt = 2¢ cos ¢,

0, sin ot + 0, cos ot = — 2¢ sin ¢,

and these are constant quantities. Thus, the apparent oscillation which corresponds
to the root \* = % consists of a small permanent displacement of the axis of rotation,
and the system rotates as if rigid about an axis which does not accurately coincide
with our axis Oz It is obvious that if ® be the angular velocity of rotation about
this axis, the system and the moving axes Oz, Oy, Oz will return to their original
positions after an interval 2a/w, and, therefore, the system will appear to oscillate in
a period 27/w relatively to these moving axes.

It is easy to see that the fluid motion, indicated by the analysis, also consists of a
motion of pure rotation.

For when 0, = ¢eii*9

B,=0 By/re® = — 1By/r0® = ide”.

Therefore, from (34),

Y, = w¥upe {az 4 1yz},
and from (6),
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1 . ) .
U =g { — po’ze” — 2dpw2e"} = — dpwre”

1

v = ,—; { — 1po¥ze” — Zipw*e} = — dwzic
o
w, = ¢o (r + wy)e”,
whence
U = — ¢wzei(wt+e)’ P o= — ¢wziei(wt+e)’ W= ¢)w (m _I_ iy) eilmt+e),

and, in the corresponding real solution, -

U = — 2¢wz cos (ot -+ €), v = 2¢wz sin (! + €),
w = 2¢o [z cos (ot + €) — y sin (wl + €)].

These are the component velocities relatively to the moving axes. The velocities
parallel to the instantaneous positions of the moving axes are

U — Yo, v+ 2o, w.

The velocities parallel to the fixed O&, On, O, are therefore

(v — yo) cos wt — (v + xw)sin vt = — 2¢pwzcos e — wy,
(v 4+ 2w) cos wt 4 (v — Yyo) sin vt = 2dwz sin € + &,

w = 2dw {£cos e — nsin €}.

Thus the fluid motion is a motion of pure rotation, the component angular velocities
about the axes being
— 2¢o sin ¢, — 2¢w cos ¢, o.

The resultant of these angular velocities is an angular velocity w about the line
whose direction cosines are

— 2¢sin e, — 2¢ cos e, 1.

The similar case for the spheroid with a free surface has been already discussed by
Bryan (¢ Phil. Trans.,” 1889).

(b). Next take
A= o[l + (q+e) (1 +¢)F = o (1 + E) say
where

E=4%(a+ &) (1+9).

Substituting this value of X in (46) and putting « = y (1 + ¢), &c., we obtain
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0',{A+B— O+ 20E—gCe} +i0,{(A+B—C) (1 +E)} —¢Cq 2t =0, |
0,{(A+B—C)+2BE—g0¢} —i0/, {(A +B—C) (14+E)}+qCe % = 0, o
%{1+61—E}+@‘_%5 (14+E) — 04, (3+2F) = 0, .
%{H’%“E}—ifjfg (14E) + e, (3++2E) = 0. ]

These equations are correct as far as first powers of ¢, €, E only. Solving for the
rvatios of €, 0y, By/re?, By/rw®, we have

o' — 0,
A+B—C42BE—¢Ce, qCe, 0 " —t(A+B=C)(1+E), qCe, 0
— 3¢, 14¢—E, 4(1+E) 0 14¢—E, i(1+E)
0, —t(1+E), 1+e—E| € (34 2E), —i(1+E), 1+ ez——Ei
. Byfrw?
T | —i(A+B—=C) (1+E), A+B—C+2BE—¢Ce, 0
0, — ey, i(14+E)
3€q, 0, 1+e—E
_ —B;)rw®
T —i(A+B—C)(14+E), A+B—C+2BE—¢Ce, qCe, ’
0, —3e;, 146 —E
3¢, 0, —t(14+F)
or ‘
0, —10, ~1By/Tew? —By/re®

(A+B=C){e,+e—4E}  (A+B—C){e;+e—48} " 3(e, 1 &) (A+B—C) 3(e,+e) (A+B—C)°

where the denominators are correct as far as first powers of ¢}, &e., only.
Replacing E by its value % (e, + ¢€,) (1 + ¢) we obtain

¢, _ _i0, _ —iByre’ _ —Byre’ (48)
— @+ D) 2q+1- 3 T o 88
Taking
0 = ¢c*
we have
0y = i’

and, in the corresponding real motion,

0, = 2¢ cos (At + €),
0, = — 2¢ sin (M + ).

The angular displacelilellts, relatively to the fixed axes O, On, O, at time ¢ are


http://rsta.royalsocietypublishing.org/

N
I \

a4
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ROTATING ELLIPSOIDAL SHELL CONTAINING FLUID. 503

0, cos wt — 0, sin wt = 2¢ cos [(A — ) t + €],
0, sin ot 4 0, cos wt = — 2¢ sin [(A — ) ¢t + €].

Thus the motion of the principal axis consists approximately of a simple harmonic
motion in period 27/(N — 0) = 2u/Ew, in virtue of which it describes a small cone
about its mean position in a direction opposite to that in which the system is rotating.

The position of the instantaneous axis of rotation of the shell is defined by the
direction cosines

él/co, O,)o, 1,

or

— 2¢ %sin (M +€), —2¢ % cos (M +¢€), 1

and since \ is approximately equal to w, this axis will be very nearly coincident with
the principal axis.
From (48) we have also

W= —1 +2 = ipe”,
= — + 2% i’ (xz + wyz) e ;

to the same order of approximation we have

3 [

. : 3]
oz e”, nW=qT 5

w=1g pozict, o= —7 "y -<f>w (% 4 wy) e*

Whence, in the corresponding real solution

U= pwzcos (M +€), v= — i_}-_é— Pwz sin (\t + ),

6
1+ 2¢

’LU=1

wy o [— x cos (Xt + €) + y sin (A2 + €)].

The velocity components relative to the fixed axes are therefore

(v — yo) cos ot — (v 4+ xw) sin ot = ih-i— 5 pwz cos (N — ot + €) — o,
(v + 2w) cos wt + (4 — Yyo) sin vt = — i 2(! Pz sin (A — ot + €) + wf’,
6 R
W= ey o {Ecos (A — wt + €) — g sin (A — ot + €)}.
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Hence, the motion of the fluid will consist very approximately of a rotation, as if
rigid, with angular velocity o about the line whose direction-cosines are

6
1+ 29

6
1+ 2¢

¢ sin (A — ot 4 €),

¢ cos (A — ot +¢), 1.

This axis will itself describe a cone in period 27/Ew, and it will be so situated that
the axis Oz lies in the plane containing the axes of revolution of the fluid and of the
shell, and is between these two axes. The semi-vertical angles of the cones described
by the axes of rotation of fluid and the shell will be in the ratio 3 : 2¢ + 1.

The motion under discussion is that which would ensue if the shell were set
rotating about its principal axis, while the fluid possessed a rotatory motion in the
same period about some other axis. It is clear, that as €, €, and consequently E,
diminish, the period of this oscillation will be prolonged ; that is to say, the motion of
the axes of rotation will become slower. This motion will be reduced to zero when
€, € vanish. In this case the internal surface of the shell is spherical, and the
shell and fluid, of course, move independently. So far as this (apparent) oscillation
15 concerned, they will each be rotating with angular velocity o, but about
different axes.

From the expression for the ratio of the amplitudes, we see that when ¢ is large,
that is when the effective inertia of the fluid is large, compared with that of the shell,
the disturbance of the shell will be considerable, compared with that of the fluid;
whereas if ¢ be small, the disturbance of the shell bears to that of the fluid, a ratio
which approximates to, but is always in excess of, 1 : 8.

This oscillation has been previously examined by Horkixs (¢ Phil. Trans.,” 1839)
under certain special assumptions, as to the initial circumstances, and to the law of
distribution of density in the shell.

(¢). Lastly, suppose A = w+/(; + ge,) (k, + qey).

The approximate form of equations (46) is now

, . . S . By '
0y {xo+ geo} B —160',B \/(Kl + ge)) (kg + qeg) + ’1(/52";'; =0,
2 i B
0y {1y + qe1} A +16",A \/(Kl + ge) (k, + &) — 9C¢ 72

|
=

Bg . o o o )
22 (14 26) 4+ 0 /(i + ge) (0 + ge2) %a —0,

b : B
20 (14 2¢) — V(i + ga) (k4 &) > = 0.
Hence approximately B,/r = B,/r = 0, and
o' _ 16, e ‘
S+ qe) e+ ge) Pet, say;
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therefore
0= é/(k) + ge) €0,
Oy = — ip /(i + qep) ™.

The corresponding real solution is

b, = 29./(k; + q&) cos (M + ¢),
0, = 2¢/(ky + q&,) sin (M + e).

The angular displacements about O£, Oy are therefore

0, cos wt — B, sin wt = ¢ {4/ (k; + q&) + (ks + g&)} cos[(w + Nt + €]
‘ + ¢ {/(k1 + ge1) — /(K3 + gey)} cos [(0 — M) £ —e],

0, cos wt + 6, sin wt = i/ (x; + q€;) + 1/ (13 + g&)} sin [(0 + M) ¢ + €]
+ ¢ {v/ (k1 + g6) — /(K + g&)} sin[(@ — A)t — €]

The motion of the principal axis in space consists, therefore, of a combination of
two simple harmonic motions, the period of each being approximately equal to
the period of rotation of the system, and the amplitudes being in the ratio
(6 qe) < /(5 + qey) 2 /(ke, + qe)) + /(xy+ ¢e,) ; in virtue of each of these
oscillations, the principal axis will describe a cone of revolution in the direction in
which the system is rotating. In the event of the system being symmetrical about
the axis of rotation ;= ¥, and € = ¢, in this case the amplitude of one of the
oscillations reduces to zero.

We have likewise

‘.
-

= — 2 " /(e + ge)sin (M + ),

g

b + 2¢ :’ v (k3 + qey) cos (Mt 4 e),

%1 cos wt — % sin ot = — ¢ Z {V/(ky + q€)) + (k3 + q€)} sin (o + Nt + €)
— ¢ 2 (/e qe) = V/(ky + g&)} sin (Vo — M —e),

Oginar+ Lcosar = ¢ X {1/, + ge) + /(o + g6} cos {(w 4+ V)1 o+ ¢}
+ 2 {3/ (i ) — /(6 + g6} cos {0 = N) ¢ ~ €],

The motion of the instantaneous axis of rotation of the shell is therefore in all
respects similar to that of the principal axis, but the semi-vertical angles of the cones
described are smaller in the ratio \ : .

. MDCOCXCV.—A., 3T
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506 ON THE OSCILLATIONS OF A ROTATING ELLIPSOIDAL SHELL.

The direction-cosines of the instantaneous axis referred to the principal axes of the
shell Ox,, Oy,, Oz, are
' 0, —wl,  6,+ b,

(O] w

1,

— 2[ X/l g0) + v (s ge) |sin O + ),

2 2/ + 00) + v/l ga) [eos O+ 0), 15

therefore, relatively to the shell, the instantaneous axis describes a cone in period 2/

This motion would ensue if the shell were started rotating about an axis not
coincident with its principal axis, and it is analogous to the motion of a rigid body
under no forces when slightly disturbed from a motion of pure rotation about a
principal axis.
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